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Abstract

Background High-throughput time-lapse microscopy has allowed researchers to monitor individual cells as they
grow into colonies and react to treatments, but a deeper understanding of the data obtained after image analysis is
still lacking. This is in part due to the biological and computational challenges related to long-running experiments
and single-cell tracking.

Methods Clonal Variability Simulator (CloVarS) is a Python tool for generating synthetic data of single-cell lineage
trees to model time-lapse microscopy experiments. After colony initialization, each individual cell is simulated for a
given number of simulation frames. During simulation, cells can migrate, enter mitosis (divide), and enter apoptosis
(die). These events are determined by distributions of cell division and death times, which can be inferred from and
fit to experimental data. Colonies have an adjustable mother-daughter (MD) and sister-sister (SisSis) fitness memory
(fm), meaning that cell fitness can range from equal to the fitness of their parent or sibling (f,, =1), non-related (f,
=0) to anti-correlated (f,,, =-1). Arbitrary treatments can be delivered to colonies at any time, modifying the division
and death distributions.

Results We show examples of trees with different division and death curves and the resulting number of cells per
tree. Values of f,,, from -1 to 1 generated SisSis and MD Pearson correlations that were fit to correlations observed in
different experimental data from normal and cancer cells.

Discussion CloVarS is an important asset for quickly exploring colony fitness dynamics, its heritability, testing
biological hypotheses, benchmarking cell tracking algorithms, and ultimately improving our understanding of single-
cell lineage data.
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Introduction

A human cell can be understood as a system of bio-
chemical signals that collectively direct it towards a
given phenotypic state of growth, migration, division,
homeostasis or death, over time. Advances in time-lapse
microscopy have allowed researchers to glimpse into
these complex relationships through single-cell tracking
[1-4], but this is not without its challenges. Maintaining
cell viability during long-running experiments may be
difficult or nearly impossible, depending on the experi-
mental settings [5]. While much effort has been put into
understanding single-cell tracking data in many different
contexts, currently there is no methodological consensus
on how to best analyze them [6]. Additionally, the vari-
ability generated in clonal cells can stem from different
sources, and modeling how clones are generated is a key
strategy for understanding the mechanisms underlying
the onset of clonal cell heterogeneity [7-9].

Various simulation models attempt to encapsulate the
intrinsic complexity of the variation in lineage trees with
different modeling strategies. Most models focus on a
specific questions, such as the overall variability of lin-
eage maps [10] or the mother-daughter, sister-sister and
cousin-cousin similarities in intermitotic time, apoptosis
time and TP53 expression [11]. Others used lineage maps
to model cellular heterogeneity and plasticity with a hid-
den Markov model to highlight the relevant states and
its transitions of cancer cells treated with chemothera-
peutic agents [12]. In spite of these efforts, a biologically-
driven modeling of cell colonies to model the generation
of heterogeneity, which is central for understanding key
aspects of tumorigenesis and response to therapy [13],
particularly one where users are able to tweak experi-
mental parameters, is still lacking.

Here, we introduce the Clonal Variability Simulator
(CloVarS), a simulator of the formation of cell colonies.
The parameters governing cell division and death can be

=

GE®....
L:

Page 2 of 7

derived from experimental data of treated and untreated
cells (see Supplementary Data for details), thus produc-
ing large amounts of biologically relevant data in seconds
instead of weeks. CloVarS can be used to test hypothe-
ses of cell growth dynamics and explore novel methods
for analyzing single-cell tracking data without the need
for a complex experimental setup. CloVarS is written in
Python. Its source code, along with installation, execu-
tion instructions and a graphic user interface, can be
found at https://github.com/jfaccioni/clovars.

Materials and methods
We briefly explain CloVarS, with further details provided
in the Supplementary Data.

Simulation model

CloVarS simulates individual clonal cells over time. At
each simulation time step (referred to as a frame), each
cell is able to either: migrate to a new position; divide
into two new cells; or die and vanish from the colony
(Fig. 1A). At every frame, data from the current simu-
lation state is written to the output files, resulting in a
complete history of the lineage trees generated by each
colony. The simulation ends when a stop condition is met
(Supplementary Table S1). Output files can then be fur-
ther processed or analyzed as desired. For convenience,
CloVarS includes some basic visualization and analysis
scripts of the output files.

Fitness thresholds and cell fate

Each cell has a fitness threshold for division (t4;,) and
death (t4eqtrn) (Fig. 1B). The fitness thresholds indicate
how early a cell will trigger its division/death event; for
example, if t4;,, = 0.1, then the cell divides at the age cor-
responding to the 0.1 percentile of the division curve (see
the numerical examples in Supplementary Fig. S1). If the
cell has not reached the age for neither of its division
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Fig.1 CloVarS overview. AThe simulation starts after reading the parameters from the settings file (see Supplementary Tables S1, 52, S3, S4 for parameter
details). Between adjacent simulation frames i and ¢ 4 1, cells are able to migrate, divide, or die. Once the simulation ends, the output files can be used
for data visualization and analysis. B Cell fate at the next frame is determined by factoring in its age, division and death thresholds, and the treatment it

is subject to (see also Supplementary Fig. S1)
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Fig. 2 CloVarS results. A Mother cells with high fitness memory (fy,) produce offspring with similar fitness thresholds, while daughter cells with low
fm have largely uncorrelated fitness thresholds among themselves and their mother. B Two colonies with a single initial cell each were simulated for
120 frames in the following scenarios: (i) no cell death; (i) moderate cell death; (ifi) moderate cell death after treatment change at 72 h. C Effect of fo,
on colony size variability. For each fi,, 100 colonies were simulated for 144 frames. Left, distribution of mean ¢4, in colonies at the start and end of the
simulation. Right, average number of cells + SD (shaded area) for each f,, over time. D Simulation results based on experimental data. For each treat-
ment, 10 colonies with fy, = 0 were simulated for 168 frames. Dashed lines: treatment average. In Fig. 2B, C, and D, At between frames was 1 h. Code

used to produce Fig. 2B, C, and D can be found in the CloVarS repository

or death events to trigger, its fate at the next frame is to
migrate. Collectively, {4;, and tgeqtn represent the cell fit-
ness, with high-fitness cells having low ¢4, ( early occur-
rence of division events) and high ¢4eq:n( resistance to
death events).

Fitness memory and inheritance
At the simulation start, each cell draws its initial fit-
ness thresholds from a uniform distribution. This is
done to maximize the potential heterogeneity of the
staring cells, since cells with the exact same fitness
thresholds will have the same outcome regarding divi-
sion and death. Upon cell division, these values may be
partially or completely inherited by its daughter cells.
The inheritance of the fitness thresholds is determined
by the fitness memory (f,,) of the colony: daughter cells
from high f,, mothers tend to have almost identical ¢4,
and tgeqth, both amongst themselves and their predeces-
sor. On the other hand, f,, values close to 0.0 means that
taiv and tgeqtn, values are largely uncorrelated between
mother and daughter cells (Fig. 2A). Intermediate f,,
values proportionally guide the colony towards fitness
preservation (f,, =~ 1.0) or randomization (f,,, = 0.0). f,,
is constant and equal for all cells in a colony, although a
treatment is able to modify it. The simulation also sup-
ports negative f,, values, which force daughter cells to
have a fitness thresholds opposite to their mothers (e.g.
a high fitness mother generating low fitness daughters).

Treatments

During the simulation, cells are under a given treat-
ment (the term “treatment” is also used to refer to
untreated/control scenarios). Treatments are used
alongside an individual cell’s ¢4, and ftgeqir, when
defining its fate at the next frame (Fig. 1B). A treatment
holds two probability density functions representing a
division curve and a death curve, respectively. At pop-
ulation level, these curves describe the chance a cell
has to divide or die as a function of its age. The divi-
sion/death curves for a given treatment can be inferred
from experimental data of cell age at division/death,
respectively (see Supplementary Data for details). The
current treatment can be modified during the course
of the simulation.

Results

Simulation scenarios

The scenarios presented in Fig. 2B demonstrate the effect
of treatments and f,, on colony growth patterns. In sce-
nario i, no death events were triggered due to the death
curve being dramatically shifted to the right. Cells from
the low f,, colony divide at diverse ages, with no cor-
relation between mother and daughter age at division.
On the other hand, the offspring of the high f,, colony
divides in regular intervals, mimicking the fitness of its
initial cell (Fig. 2B, scenario i).

When cell death events are introduced, either from
the simulation start (scenario i) or after a treatment
change (scenario iii), having low f,, increases the odds
that at least some cells from the colony are able to sur-
vive the treatment. This is known as fractional killing in
an in vitro experimental setting [14]. In contrast, a colony
with high f,, faces an all-or-nothing scenario: as long as
its initial cell is able to survive, its fitness thresholds are
largely copied to its offspring, giving rise to a stably resis-
tant colony (Fig. 2B, scenarios ii and iii).

Interestingly, even though low f;,, leads to a higher het-
erogeneity in lineage tree structure, high f,, produces a
higher variability in colony sizes (Fig. 2C). In fact, huge
colonies are only achievable by high f,,, colonies that
preserve their fast division time and resistant phenotype
throughout generations (Supplementary Video S1), as
suggested by experimental data [9].

Experimental comparison

To evaluate how CloVarS compares to a traditional in
vitro experiment, we fit the division and death curves
from experimental data of manually tracked cells (see
Supplementary Data for details). Two treatments were
defined: Control, based on division times of A172 glio-
blastoma cells under unhindered growth, and TMZ,
estimated from division and death times of A172 glio-
blastoma cells under concentrations of temozolomide
that induce fractional killing. Similarly to in vitro experi-
ments, cells under the TMZ condition were left to grow
for 3 days prior to treatment addition. Switching to
TMZ treatment reproduces the fractional killing effects
observed in vitro (Fig. 2D, Supplementary Fig. S2).

For trees generated with Clovars, we calculated the
Pearson correlation between the branch lengths of sister
cells (SisSis) and of mother-daughter (MD) pairs gener-
ated with SisSis and MD f,,, ranging from -1.0 to 1.0 and
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linked these to the correlations observed in Madin-Darby
Canine Kidney (MDCK) epithelial cells [15]) (Fig. 3A-
C). For HCT116 cells of human colon cancer [11]) (Fig.
3D and E) the calculated values generated with MD-f,,
of -0.2 and SisSis- f,,, of 0.6 were very close to the mea-
sured correlations of -0.03 for MD and 0.73 for SisSis
correlations.

We also manually tracked cells to generate trees from
A172 glioma cells and calculated the SisSis and MD cor-
relations of each tree and then averaged these correla-
tions. The MD- f,,, of -0.2 and SisSis- f,,, of 0.4 generated
trees with correlations that were not statistically differ-
ent from the measured trees, while changing the Sis-
Sis correlation 0.2 in both directions already generated

correlations which were statistically different from the
measured correlations (Fig. 3F-H). (For parameters, see
Supplementary Table 5). These examples indicate that
Clovars is a valuable tool to find memory conditions that
create trees that describe the MD and SisSis correlations
observed in real cell biology trees.

Discussion

Producing accurate and reliable single-cell microscopy
data is experimentally and computationally challenging.
In this sense, CloVarS can be a valuable tool for generat-
ing data for a virtually infinite number of colonies, and
testing a variety of biological hypotheses. Cell signaling
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fluctuations can also be explored and modeled using Clo-
Vars§ (Fig. S3, Supplementary Video S2).

While other biological cell simulators exist in the lit-
erature [16—21], a major focus during CloVarS’ develop-
ment was to keep a biology-first mindset: the underlying
rules of the simulation should not be overly complex
to the point where the concepts cannot be understood
by most cell biologists. The interdependence of cell fit-
ness thresholds and treatment curves when choosing
cell fate is a deliberate design choice for the simulation.
It establishes a link between the individual cell fitness
(tgiv and tgeqrn) and the population-derived division
and death probability density functions. This is in accor-
dance to experimental results that indicate that fitness is
a dynamic phenotype that partially depends on the cell
itself, but also on its surrounding environment [9, 22].

Conclusion

The interplay among individual cell fitness, colony fitness
memory, and treatments are assembled into a program
that is stochastic at its core, but reproduces the expected
clonogenic behavior and variability as observed in vitro
[23]. CloVarS allow researchers to explore biological
hypotheses related to the formation of heterogeneous cell
colonies and their fitness dynamics.
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