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A self-propelled particle model is introduced to study cell sorting occurring in some living organisms.
This allows us to evaluate the influence of intrinsic cell motility separately from differential adhesion with
fluctuations, a mechanism previously shown to be sufficient to explain a variety of cell rearrangement
processes. We find that the tendency of cells to actively follow their neighbors greatly reduces segregation
time scales. A finite-size analysis of the sorting process reveals clear algebraic growth laws as in physical
phase-ordering processes, albeit with unusual scaling exponents.
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Regeneration after tissue dissociation and reaggregation
of some species of sponges, sea urchins, and hydras has
been investigated in a series of experiments [1]. These
phenomena involve cell sorting: Initially mixed cells
form clusters, similarly to domain growth processes in
physics. To explain cell sorting, Steinberg [2] proposed
the differential adhesion hypothesis (DAH), which postu-
lates that local rearrangements depend on the adhesion and
motility properties of the different types of cells involved.

Experiments have verified some of the DAH postulates.
Surface tension measurements in chicken embryonic tis-
sues [3] and determination of adhesive forces between
pairs of Hydra cells [4] confirmed the relative magnitudes
necessary to favor tissue envelopment: Ectodermic cells
are less cohesive than endodermic cells. It was also shown
that random membrane ruffling induces effective cell mo-
tion [5]. However, the coherent component of cellular flow
must also be considered, as in viscoelastic fluids [6].
Remarkable experiments on Hydra performed in two spa-
tial dimensions by Rieu et al. [7,8] discriminate between
random and coherent motion contributions to cell segrega-
tion, showing that, during aggregate rounding or sorting,
endodermic cell dynamics is dominated by the coherent
behavior of ectodermic cells. Also, short-range spatial
correlations corresponding to parallel displacement of ad-
jacent cells were observed. The diffusive properties of cells
were also measured. In all cases, diffusion was found to be
normal only beyond a trapping time during which cells
keep the same neighbors. This time is smaller for endo-
dermic cells immersed in the ectoderm.

Cell-sorting phenomena, such as Hydra regeneration
from random cellular aggregates, have been simulated in
the seminal work by Graner and Glazier in 1992 [9], later
extended by Hogeweg and co-workers [10] (hereafter the
GGH model). In the GGH model, cells are represented on a
site-labeled lattice. A connected group of sites with the
same label stands for a cell, and an energy function ac-
counts for surface tension between adjacent cells while
keeping the cell sizes fluctuating around specified targets.

Monte Carlo simulations showed that sorting may occur,
with less adhesive cells engulfing the more adhesive ones.
However, this type of approach cannot easily account for
locally coherent active cell motion (see [11] for such an
attempt). Moreover, if GGH-like models do lead to real-
istic final configurations, the simulations performed so far
[9] suggest that the growth process underlying cell sorting
exhibit slow logarithmic laws at odds with the experimen-
tal work of Ref. [12], which advocates linear growth,
although these measurements were performed over times
too short to be fully conclusive. There are some other
interesting approaches to model cell sorting, but the seg-
regation evolution is not quantitatively measured [13].

Here we introduce a simple, versatile, self-propelled
particle model for cell sorting and other situations where
cohesive cells actively move. While incorporating the ba-
sic tenets of DAH, it allows for an independent assessment
of the role played by coherent active motion using particles
interacting through velocity-dependent forces. We find that
even a moderate amount of local coherent motion consid-
erably speeds up cell sorting. We show that cell cluster
growth, in our model, is characterized by algebraic scaling
laws with unusual exponents. Moreover, our results hint
that the logarithmic scaling found in the GGH model might
be valid only in the absence of any coherent active motion.

Self-propelled particle systems have been used as mod-
els for the collective motion of animals [14], for active cell
motion in bacterial baths [15], bacteria and amoeba colo-
nies [16], or groups of cells moving on a substrate such as
keratocytes [17] and melanocytes [18]. The Vicsek model
[19] is probably the simplest model of active motion: Point
particles move in a continuous space at fixed speed, locally
aligning with their neighbors. However, as such, the parti-
cles have no ‘‘physical size’’ and no cohesive interactions,
both ingredients needed when modeling cell sorting.
Grégoire et al. extended the Vicsek model by considering
a classic two-body attraction or repulsion force [20,21].
They showed that this allows for cohesion while endowing
the particles with a well-defined but fluctuating size. Our
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cell-sorting model is an extension of this work where we
consider two cell types with different interaction intensities
to simulate differential adhesion.

Consider N particles moving with velocities of fixed
modulus v0 (driven-overdamped dynamics). In two space
dimensions, the state of particle n at time t is represented
by its position xtn and a single orientation angle �tn (or,
equivalently, by its velocity vtn). At every time step (�t � 1
without loss of generality), we calculate the new orienta-
tion �t�1

n of each particle along which it is displaced by a
distance v0. The positions and orientations of all neighbor-
ing particles m within a radius r0 of particle n determine
�t�1
n according to

 �t�1
n � arg

�X
m�n

�
�nm

vtm
v0
� �nmftnmetnm

�
� �utn

�
; (1)

where ftnmetnm is the force exerted by particle m on particle
n, along the direction etnm going from particle m to particle
n, and utn is a unit vector with random, uniformly distrib-
uted orientation. Parameters �nm and �nm control, respec-
tively, the relative weights of the alignment interaction
(first term) and of the radial two-body forces fnm, with
respect to the noise intensity �. (In the following, � � 1,
without loss of generality.) The radial force consists of a
hard core repulsion for distances smaller than a core radius
rc and a harmoniclike interaction around the equilibrium
radius re, from rc up to a maximum range r0:

 fnm �

8<
:
1 if rnm < rc;
1� rnm

re
if rc < rnm < r0;

0 if rnm > r0:
(2)

All distances are expressed in units of re, i.e., re � 1. In
this case, r0 � 1:32re is chosen such that each particle has
six neighbors on average. The remaining parameters are
rc � 0:40re and v0 � 0:1re.

By considering all cells of the same type, such that
�mn � � and �mn � �, we find a ��;�� phase diagram
qualitatively similar to that reported in Ref. [20]: gas phase
at low enough � values and liquid and solidlike phases as
� is increased. For large-enough � values, the liquid and
solid phases are endowed with long-range orientational
order, i.e., active collective motion sets in. These latter
regimes are not realistic in the context of cell sorting, and
we limit ourselves to small � values for which no long-
range collective motion arises. As � is increased, cohesion
increases, eventually inducing two regimes for the diffu-
sive properties of particles: At short times, particles are
trapped by their neighbors, but beyond this trapping time �,
diffusion is normal.

Differential adhesion is described by different � values
associated to interaction between cells of different types.
For simplicity, we choose a uniform value of � for all cells.
Having Hydra in mind (detailed experimental data are
available), we define two kinds of particles, 1 and 2,
corresponding, respectively, to endodermic and ectodermic

cell types. The interaction parameters are thus:�11 and�22

to account for cell cohesion within each cell type and �21

and �12 for intercell-type interactions, assumed for sim-
plicity to be symmetric, i.e., �12 � �21.

Our simulations were performed on a square domain of
linear size L much larger than the typical surface occupied
by cells: L2 � N�r2

e. Initially, the particles are randomly
placed in a square subdomain of linear size ‘ (‘� ‘ ’
N�r2

e). The simulation starts with all cells possessing
ectoderm attributes (�22 � 2:5, in the liquid phase), until
they form a compact group. The duration of this phase
depends on N (�4000 time steps for N � 800). We then
randomly label a fraction of cells as ‘‘endodermic’’ and fix
the two-body interaction parameters as �11 � 3:83, �12 �
2:53, and�22 � 2:5. For�11 � 3:83, the trapping time � is
of the order of 104 time steps while it is of order 10 for
�< 2:67, respecting the experimental fact observed in
Hydra experiments [8] that � is smaller in pure ectoderm
than in pure endoderm.

Figure 1 shows the typical evolution, for � � 0:01, of a
group of 800 cells with a proportion of 1:3 of endodermic
to ectodermic cells (in agreement with experiments on
Hydra). Figure 1(a) shows the initial, compact cluster.
Figure 1(b) is a snapshot 3000 steps later, when small
clusters of endodermic cells have formed. Growth contin-
ues [Fig. 1(c), t � 3� 105] until a single cluster is formed
[Fig. 1(d), t � 2� 106]. The final shape is never perfectly
round, and some isolated endodermic cells remain in the
ectoderm tissue, in agreement with experiments [7].

To quantify the degree of cell sorting, we measure �1

(�2), defined as the average fraction of ectodermic (endo-
dermic) neighbors around endodermic (ectodermic) cells:

 �i �
�

n�

n� � n�

�
; (3)

FIG. 1. Sorting of 800 cells. Black and gray circles represent,
respectively, endodermic and ectodermic cells. (a) Initial con-
figuration; (b) t � 3� 103; (c) t � 3� 105; (d) t � 2� 107.
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where n� and n� are the numbers of different- and same-
type neighbors of a central endodermic (i � 1) or ectoder-
mic (i � 2) cell. Perfect cell sorting is expected to ap-
proach �i � 0 in large systems. In the segregated phase, �i
is proportional to the total length of interfaces between the
clusters. In practice, dispersed cells, effects of noise and
disorder, and remaining interfaces prevent �i from reach-
ing zero in finite systems.

Figure 2 presents the evolution of �1 for several values
of � smaller than 0.04, the onset of collective motion
(results for �2 are similar). A short transient of about
104 time steps is observed in all cases. For the larger values
(� � 0:01, 0.0125, and 0.015), clear algebraic decay is
observed after this initial transient, with an exponent � �
0:18	 0:02. For smaller � values, logarithmic decay oc-
curs first after the 104 transient, followed by a crossover to
an algebraic regime with approximately the same power
law as for larger � values. The crossover time increases as
� decreases and could be infinite for � � 0.

For a finite system, the algebraic decay of �1 is followed
by a saturation at an �- and N-dependent level (see the
� � 0:015 curve in Fig. 2). For � � 0:01–0:015, segrega-
tion is efficient, stable, and fast [Fig. 1(d)]. For lower
values (� � 0 and � � 0:005), it takes nearly 1 order of
magnitude longer to form a single cluster. For �> 0:015,
cell sorting is fast, but the coherent motion of subgroups of
cells induces strong fluctuations on the central cluster
surface, leading sometimes to partial breakup.

During real regeneration phenomena, cells have a finite
time to reorder, and the sorting process may end up in-
complete. For example, due to an excess in number, cells
may die before reaching their correct position, or, because

of a too small number of cells, large fluctuations may
render the tissues interface unstable [7]. Thus, the regen-
eration time scale, its relation with the number of cells, and
the degree of regeneration achieved are relevant to the
organism survival. We now pay attention to these quanti-
ties within our model. In what follows, we use, for nu-
merical ease, � � 0:01, which yields reasonably fast seg-
regation together with weak interface roughening.

Figure 3(a) (inset) shows cell-sorting evolution for dif-
ferent system sizesN. While the decay exponent � remains
the same, both the asymptotic segregation values �
1 and
the saturation time t
 scale with N, yielding �
1 � N

�	 and
t
 � N
, with 	 � 0:32	 0:01 and 
 � 1:77	 0:04
[Figs. 3(b) and 3(c)]. Usual scaling arguments imply that
	� �
 [22]. We estimated �
 � 0:32	 0:04, very close
to the measured value of 	. A final check of the scaling
analysis above is the collapse plot presented in Fig. 3(a).

The above scaling laws are robust. For example, by
changing from �11 � 3:83 to �11 � 5 (much more cohe-
sive core), we find that � � 0:20	 0:02. By modifying the
displacement rule to one in which the particle displacement
is proportional to the resultant ‘‘force’’ [i.e., the quantity

10
2

10
3

10
4

10
5

10
6

10
7

10
8

t

0.25

0.75

γ1
α=0
α=0.005
α=0.01
α=0.0125
α=0.015

10
2

10
4

10
6

10
8

0.25

0.5 3D, α = 0.01

FIG. 2 (color online). Cell sorting in two dimensions from a
random, roughly circular initial aggregate of N � 6400 cells in a
proportion of 1:3 endodermic to ectodermic cells. Evolution of
�1 for different � values. The dashed line has slope �� �
�0:18. Inset: Same in three dimensions but with � � 0:01 and
�11 � 8:3. The dashed line has slope �0:16.
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FIG. 3 (color online). (a) Rescaling of the segregation evolu-
tion for different total numbers of cells. The raw data are shown
in the inset with the same symbol convention. Parameters: �11 �
3:83, �12 � 2:53, �22 � 2:5, and � � 0:01. (b) Asymptotic
order parameter �
1 vs N; the straight line has slope �	 �
�0:32. (c) Saturation time t
 vs N. The straight line has slope

 � 1:77.
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inside the square brackets in (1)], we estimate � � 0:18	
0:02. These data, not shown, will be reported elsewhere.
More surprisingly, a first series of runs in three dimensions
show similar behavior, with � of the same order of magni-
tude (inset in Fig. 2). This said, the estimated value of the
coarsening exponent � is rather unusual. Even though � �
0:18 is probably a lower bound (some of the data in Fig. 2
can be fitted to � � 0:2 or 0.22), it certainly differs from 1

3 ,
the value expected for grain growth in binary alloys or
other conserved order parameter systems [23], as well as
from 2

3 , expected for spinodal decomposition in three-
dimensional systems with hydrodynamic couplings [24].
The scaling behavior of �
1 withN, controlled by	, is not a
simple geometric consequence of the relative decrease of
cells at a circular endoderm-ectoderm interface with N,
since that would lead to �
1 � N

��1=2�. At the moment, we
have no satisfactory understanding of the recorded scaling
laws.

In summary, we introduced a self-propelled particle
model for cohesive cell rearrangements, with a velocity-
dependent interaction term, which constitutes an alterna-
tive to the GGH model. Regarding the regeneration of
Hydra, our model corroborates the experimental facts, as
described in Ref. [7]. Our approach allows us to separately
investigate the effects of random and coherent cell motion
events. We have shown that even weak coherent motility
facilitates cell sorting. Remarkably, we have found phase-
ordering processes governed by power laws when velocity-
dependent coupling is high enough, in contrast with the
logarithmic behavior advocated for the GGH model [9].
There are two ways out of this contradiction: Either the
GGH model does, in fact, exhibit algebraic scaling but was
never explored in large-enough systems over long-enough
times to reveal it, or it does show logarithmic decay
asymptotically, but then, as hinted by our own results,
this behavior is not robust to the presence of even the
smallest amount of active coordinated motion between
neighboring cells.

In this context, more extensive simulations of the GGH
model are needed, as well as large-scale quantitative ex-
periments, to find out which type of scaling laws actually
governs cell sorting and, if power laws are found, to check
whether the rather robust but unusual exponent values
found in this work hold. More generally, the versatility
and numerical efficiency of our approach could be useful in
other situations where cohesive biological cells actively
move coherently, such as wound healing, tumor growth, or
early stages of development like gastrulation. Finally, bio-
logical cells interact via many channels and not only by
contact adhesion. Some of these interactions (e.g., chemi-
cally mediated) are likely to be long-range, a feature which
could potentially alter the scaling laws described here and
deserves further investigation.
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